mainmenu

 
  • Home
  • Article
  • Comic
  • Games
  • Music
  • Video
  • Sitemap
  • About us

Friday, February 17, 2012

The History of the Flexible Screen (FOLED) | Polymerize

Flexible phone screen? Is that real?

Yes it is. Now we can enjoy the flexibility of flexible organic-light emitting diode (FOLED) screen. A FOLED is a type of organic light-emitting diode (OLED) incorporating a flexible plastic substrate on which the electroluminescent organic semiconductor is deposited. This enables the device to be bent or rolled while still operating. Currently the focus of research in industrial and academic groups, flexible OLEDs form one method of fabricating a rollable display. Then, what is the history of it?


A. Bernanose and co-workers at the Nancy-Université, France had observated, for the first sime, the electroluminescence in organic materials in the early 1950s by. They applied high-voltage alternating current (AC) fields in air to materials such as acridine orange, either deposited on or dissolved in cellulose or cellophane thin films. The proposed mechanism was either direct excitation of the dye molecules or excitation of electrons.

Then, in 1960, Martin Pope and co-workers at New York University developed ohmic dark-injecting electrode contacts to organic crystals. They further described the necessary energetic requirements (work functions) for hole and electron injecting electrode contacts. These contacts are the basis of charge injection in all modern OLED devices. Pope's group also first observed direct current (DC) electroluminescence under vacuum on a pure single crystal of anthracene and on anthracene crystals doped with tetracene in 1963 using a small area silver electrode at 400V. The proposed mechanism was field-accelerated electron excitation of molecular fluorescence.

Pope's group reported in 1965 that in the absence of an external electric field, the electroluminescence in anthracene crystals is caused by the recombination of a thermalized electron and hole, and that the conducting level of anthracene is higher in energy than the exciton energy level. Also in 1965, W. Helfrich and W. G. Schneider of the National Research Council in Canada produced double injection recombination electroluminescence for the first time in an anthracene single crystal using hole and electron injecting electrodes, the forerunner of modern double injection devices. In the same year, Dow Chemical researchers patented a method of preparing electroluminescent cells using high voltage (500–1500 V) AC-driven (100–3000 Hz) electrically-insulated one millimetre thin layers of a melted phosphor consisting of ground anthracene powder, tetracene, and graphite powder.

Their proposed mechanism involved electronic excitation at the contacts between the graphite particles and the anthracene molecules. Device performance was limited by the poor electrical conductivity of contemporary organic materials. This was overcome by the discovery and development of highly conductive polymers. For more on the history of such materials, see conductive polymers. Electroluminescence from polymer films was first observed by Roger Partridge at the National Physical Laboratory in the United Kingdom. The device consisted of a film of poly(n-vinylcarbazole) up to 2.2 micrometres thick located between two charge injecting electrodes. The results of the project were patented in 1975 and published in 1983. The first diode device was reported at Eastman Kodak by Ching W. Tang and Steven Van Slyke in 1987. This device used a novel two-layer structure with separate hole transporting and electron transporting layers such that recombination and light emission occurred in the middle of the organic layer.

This resulted in a reduction in operating voltage and improvements in efficiency and led to the current era of OLED research and device production. Research into polymer electroluminescence culminated in 1990 with J. H. Burroughes et al. at the Cavendish Laboratory in Cambridge reporting a high efficiency green light-emitting polymer based device using 100 nm thick films of poly(p-phenylene vinylene).


----------------------------------------------------------------------------------------- >>> polymerize >>>

0 comments:

Post a Comment

Twitter Bird Gadget